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SUMMARY

A parallel large eddy simulation code that adopts domain decomposition method has been developed for
large-scale computation of turbulent flows around an arbitrarily shaped body. For the temporal integration
of the unsteady incompressible Navier–Stokes equation, fractional 4-step splitting algorithm is adopted,
and for the modelling of small eddies in turbulent flows, the Smagorinsky model is used. For the
parallelization of the code, METIS and Message Passing Interface Libraries are used, respectively, to
partition the computational domain and to communicate data between processors. To validate the parallel
architecture and to estimate its performance, a three-dimensional laminar driven cavity flow inside a
cubical enclosure has been solved. To validate the turbulence calculation, the turbulent channel flows at
Re� = 180 and 1050 are simulated and compared with previous results. Then, a backward facing step flow
is solved and compared with a DNS result for overall code validation. Finally, the turbulent flow around
MIRA model at Re= 2.6× 106 is simulated by using approximately 6.7 million nodes. Scalability curve
obtained from this simulation shows that scalable results are obtained. The calculated drag coefficient
agrees better with the experimental result than those previously obtained by using two-equation turbulence
models. Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Finite element methods (FEMs) are frequently adopted to discretize the incompressible Navier–
Stokes equations for its versatility in treating complex geometries. Due to the rapid growth of
computing power and the development of cost-effective algorithms such as matrix-free iterative
method [1, 2] and segregated algorithms [3, 4], FEM has been successfully applied to practical fluid
flow problems such as those related to road vehicles. Johnson and Tezduyar [5] and Tezduyar et al.
[6] performed large-scale parallel computations for the analyses of practical problems with complex
geometries by utilizing an integrated stabilized finite element formulation of the Navier–Stokes
equations and mesh partitioning method, while Rifai et al. [7] conducted large-scale parallel sim-
ulations using both the Galerkin least-squares (GLS) method and domain decomposition method.
They used an equal-order integrated P1/P1 finite element formulation that works well with diagonal
preconditioning of which parallel algorithm can be developed with ease.

On the other hand, Choi et al. [8] used a splitting 4-step formulation with P2/P1 finite element
for the serial computation of the Navier–Stokes equations. The method does not require a special
treatment of pressure boundary condition which is typical of the splitting algorithm [3] since
both pressure and velocity are obtained simultaneously at the last (divergence-free) stage of the
splitting method. However, it has a difficulty in constructing scalable parallel preconditioner of
a saddle-point type global matrix given at the last stage. Therefore, in the present study, a
4-step splitting formulation with P1/P1 finite element [3] is to be adopted for a scalable parallel
computation of a large-scale problem. Elliptic type pressure equation, which is easy to parallelize,
is to be solved instead of a saddle-point type global matrix. Moreover, the present formulation
solves the equations corresponding to three velocity and pressure variables separately. Hence, it is
intrinsically suitable for a scalable computation and reduces memory requirement compared to a
velocity–pressure integrated formulation.

For simulating the turbulent flow around a vehicle model, many efforts have been made. Carr
[9], Gaylard et al. [10], Hur et al. [11] and Myoung and Jin [12] performed numerical simulations
of the flow around MIRA (Motor Industry Research Association, Nuneaton, Warwickshire, United
Kingdom, http://www.mira.co.uk) model using two-equation turbulence models. Carr compared
the numerical solutions obtained from various commercial codes with the experimental results.
Gaylard et al. compared their numerical results for three different MIRA models, obtained by
finite volume method (FVM) based on SIMPLE algorithm, with experimental results. However,
both the numerical results were obtained without wheels. The previous finite volume results based
on conventional two-equation turbulence models reveal that the drag coefficient of the flow around
MIRA model is very hard to predict. Hur et al. [11] and Myoung and Jin [12] simulated the
flow with wheels using FVM based on SIMPLE algorithm in conjunction with k.� and RNG k.�
turbulence models, where the predicted drag coefficients were about 60 and 30% higher than the
experimental result, respectively. Hajiloo et al. [13], Johnson and Tezduyar [5] and Rifai et al.
[7] calculated an external turbulent flow around a car model with FEM. Hajiloo et al. [13] used
a two-equation turbulence model and streamline upwind Petrov–Galerkin (SUPG) method with
segregated formulation. Although they obtained quite accurate results for pressure profiles on the
surface of the car, the typical vortex behind the model was not predicted as it should be. Johnson
and Tezduyar [5] used the Smagorinsky model as a zero-equation turbulence model and predicted
drag coefficients that agree well with the experimental result. Rifai et al. [7] used Spalart–Allmaras
turbulence model and obtained pressure profile at the symmetry plane that agrees well with an
existing experimental result. However, it has to be noted that almost all results from FEM or FVM
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are time-averaged results from steady flow simulation despite the fact that the actual flow field is
unsteady.

On the other hand, there is still few reported works on large eddy simulation (LES) of the
turbulent flow around a car model. Choi et al. [8] conducted a LES of the flow around the MIRA
model and obtained quite an accurate drag coefficient with approximately 0.7 million nodes.
However, as their calculations were carried out with a single processor, they spent about 1 month
of CPU time for the 20-s simulation of the flow using a Compaq GS320 Machine, which is
untenable for practical use.

The objective of the present study is to parallelize a fractional 4-step splitting algorithm with
P1/P1 finite element [3], which is cost effective and easy to parallelize due to the splitting of
velocity and pressure variables, for carrying out LES calculations of turbulent flows around an
arbitrarily shaped body. Domain decomposition method with Message Passing Interface (MPI)
Library [14] is used and parallel block ILU preconditioner [15, 16] is adopted to accelerate the
convergence of conjugate-gradient-type iterative solvers. Driven cavity flow in a cubical enclosure
is solved to verify the developed parallel code and to estimate the parallel performance of the code.
Both constant-coefficient and dynamic-Smagorinsky models are adopted as turbulence models. To
validate the turbulence calculation we solve the turbulent channel flows at two different Reynolds
numbers, and for overall code validation we solve a backward facing step flow. Lastly, the flow
around the MIRA model is calculated using the present parallel code with 32 IBM SP processors,
by comparing with both the experiment [9] and the serial result based on a splitting P2/P1 finite
element formulation [8].

2. NUMERICAL METHODS

The governing equations are the continuity equation and the incompressible Navier–Stokes equation
in conjunction with Smagorinsky LES models:

∇ ·U = 0 (1)

�U
�t

+(U · ∇)U =∇ · �̃ (2)

where �̃= −(p/�) Ĩ +̃�, �̃ = 2�e S̃, �e = �+�t , �t =C�2S, S = (2S̃ : S̃)1/2, S̃ = 1
2 (∇U+∇UT), �=

(volume)1/3 and �, �e, �t ,C, S̃ and � denote the kinematic viscosity, effective viscosity, eddy
viscosity, Smagorinsky model constant, strain-rate tensor and the characteristic length of a finite
element, respectively. The boundary and initial conditions for Equation (2) is given as follows:

U |�1 = b, �̃ · n|�2 = t

U (x, 0) =U0(x)
(3)

where �1 and �2 are two non-overlapping subsets of the piecewise smooth domain boundary,
b is the velocity given on �1, t is the traction vector given on �2, and n is the outward unit normal
vector to �2.

Fractional 4-step splitting method is adopted to solve the above equations, which was devised
by Choi and Moin [17] and implemented in the context of equal-order finite element (P1/P1)
method by Choi et al. [3]. In order to avoid the blow-up of the numerical solution at very high
Reynolds numbers, SUPG method [18] has been adopted only for the flow around MIRA model.
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2.1. P1/P1 fractional 4-step method and finite element formulation

1. Given the pressure field of previous time step pm , we need to obtain an intermediate velocity
field from the non-linear incompressible momentum equation, which is temporally discretized by
Crank–Nicolson method, at the first fractional step, as follows:

Find Û ∈ H1 such that∫
�

[
W ·

(
Û

�t
+1

2
(Û · ∇)Û

)
+∇W : �̂

2

]
d�

=
∫

�

[
W ·

(
Um

�t
−1

2
(Um ·∇)Um

)
−∇W :

(
�̂

2
− pm

�
Ĩ

)]
d�+

∫
�2

W ·t d� ∀W∈H1 (4)

W |�1 = 0, U |�1 = b, U (x, 0)=U0(x)

In the above equation, H1 denotes a space where the first derivative of the basis function is
square integrable. The Dirichlet boundary condition for intermediate velocity is Û =Um+1, as was
discussed in Reference [3].

2. At the second fractional step, the following equation for another intermediate velocity U∗,
whose finite element formulation is trivial, is solved with the given pressure field of the previous
time step:

U∗ − Û

�t
= 1

�
∇ pm (5)

This fractional step is necessary for the second-order accurate boundary condition of the interme-
diate velocity, which was discussed in [3, 16].

3 and 4. At the next fractional steps, the following Poisson-type pressure equation derived from
divergence-free constraint is solved and then the updated pressure field corrects the velocity field:

∇2 pm+1 = �

�t
∇ ·U∗ (6)

Ûm+1 −U∗

�t
=−1

�
∇ pm+1 (7)

The finite element formulation of Equation (6) can be found in Reference [3].

2.2. Finite element, numerical integration and element matrices

Since only tetrahedral element is used in this study, all variables are interpolated using a linear
tetrahedral shape function within an element:

u(e) =
4∑

i=1
ui Ni

Ni = (ai+bi x+ci y+di z)/6V

(8)
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Formulas for V, ai , bi , ci , di can be found in Reference [19] and derivatives of the shape function
can be easily evaluated. The following well-known formula is used for integration:∫

�
N�
i N

�
j N

�
k N

	
l d�= �!�!�!	!6V

(� + � + � + 	 + 3)! (9)

On the other hand, the element matrix generated from the discretization of Equation (4) is given
as follows:

(M+C+K)Û = F

F=
∫

�

[
W ·

(
Um

�t
− 1

2
(Um · ∇)Um

)
− ∇W :

(
�m

2
− pm

�
Ĩ

)]
d�+

∫
�2

W · t d�

(10)

where M, C, K are mass matrix, convective matrix and diffusion matrix, respectively. The non-
linearity of convection term is linearized using the successive substitution method. For a detailed
expression of these matrices, see Reference [20].

2.3. Pressure boundary conditions

As the fractional 4-step method solves the pressure equation, the boundary conditions for the
pressure are required. By assuming traction-free condition at the exit and considering Equation
(3), the pressure boundary condition at the exit is derived as follows:

pm+1n= ��m+1 · n= ��̂ · n (11)

where �m+1 can be replaced by �̂ since Û =Um+1 [3].
Utilizing the no-slip condition, the pressure boundary condition at the wall is given as follows:

�pm+1

�n
= 0 (12)

2.4. SUPG method

We need to use at most 6.7 million nodes distributed among 32 processors for the simulation of the
flow around the MIRA model at Re= 2.6× 106. However, the number of nodes is not sufficient
enough to obtain a stable solution with Galerkin method at such a high Reynolds number. At
present, we are not certain how many nodes are necessary to solve this problem with Galerkin
LES. Therefore, the SUPG method is adopted to stabilize the formulation in the simulation of very
high Reynolds number flows, so that the Galerkin weight in Equation (4) is modified as follows:

W̃ =W+sU · ∇W, s = �he
2|u|e (13)

where � is a function of the cell Peclet number and he is the element characteristic length. It
is noted that the results obtained will still be close to those obtained from Galerkin LES since
the numerical diffusion introduced by applying SUPG to the discretization of the incompressible
Navier–Stokes equations decreases as element size decreases.
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2.5. LES models

LES is adopted to describe the turbulent flow. Both the constant-coefficient and the dynamic-
Smagorinsky models are implemented in the present code. The model constant of LES model may
depend on the Reynolds number, the characteristics of the flow field, etc. While a fixed coefficient
is adopted in the conventional-Smagorinsky model regardless of the flow field, the coefficient
of dynamic LES model is a function of filtered stress tensors of the flow field. In the constant-
coefficient model, eddy viscosity �t is given as in Equation (2), where C = 0.01 regardless of the
flow field. To account for the wall effect in the constant-coefficient model, the following damping
function is used to modify the characteristic length of a finite element adjacent to the wall:

�= {1 − exp(−y+/A+)}� (14)

where � is the modified length scale of the element and empirical constant A+ = 25 is used in
this study.

In the dynamic model, generalized top hat filter [21] is adopted for the unstructured mesh around
the MIRA model. The filtering process is carried out through the convolution of any function f
with filtering kernel G as follows:

f̃ (x)=
∫
� G(x, x ′) f (x ′) dx ′∫

� G(x, x ′) dx ′ (15)

In this model, the model constant C is not fixed but is a function of resolved stress tensors Li j
and Mi j :

Li j =˜uiu j − ũi ũ j , Mi j = (�̃/�)2 S̃ S̃i j − ˜SSi j , C�
2 = 1

2

Li j Mi j

MpqMpq
(16)

where the overbar denotes a variable filtered at an element length scale � while the tilde denotes a
variable filtered at a larger scale, which is twice the element length scale in the case of a uniform
grid. A kind of averaging process in the dynamic model is not considered for the simulation of
the MIRA model since a fully unstructured mesh is employed for the simulation. For the case of
the channel flow where averaging process is involved, it has been found that the model constant is
positive over nearly the whole computational domain. We have clipped out the constant in some
regions, wherever it becomes negative.

2.6. Parallelization

Domain decomposition method is used to parallelize the fractional 4-step method. After the mesh
generation, manual partitioning is used for structured mesh and METIS Library [22] is used for
unstructured mesh to divide the computational domain into many subdomains. Message passing be-
tween processors is performed by MPI Library. Conjugate gradient (CG) method and Bi-CGSTAB
[23] are, respectively, used to solve symmetric and unsymmetric matrices that result from fractional
4-step method. All matrices are preconditioned with block ILU parallel preconditioner [15, 16].
A computational domain is decomposed by vertex-oriented domain decomposition method on the
basis of the fact that each subdomain has the same number of vertices to satisfy the load balance
for all processors. Each decomposed subdomain consists of internal nodes, interior and exterior
boundary nodes, as illustrated in Figure 1 [24]. After domain decomposition, the nodes are locally
renumbered in the order of internal nodes, interior boundary nodes and exterior boundary nodes.
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Figure 1. Classification of nodes in a subdomain.

Each processor calculates the values of flow variables at internal nodes independently. However,
for those at interior and exterior boundary nodes, communications with adjacent processors are
needed before the calculation. In each processor, only local values belonging to each subdomain
are computed and stored. Therefore, rows for exterior boundary nodes are neglected in constructing
the local matrix for each processor. The local matrix [Ai ] for solving values at internal and interior
boundary nodes in decomposed i th subdomain can be typically constructed as follows:

[Ai ]{xi } = { fi }

[Ai ] =
(
Bi Ei 0

Fi Ci I ji

)
, {xi }=

⎛⎜⎜⎝
ui

vi

w
j
i

⎞⎟⎟⎠ , { fi }=
(
si

ti

)
(17)

It is noted that {ui } and {si } are components from internal node values, {�i } and {ti } from
interior boundary node values and {w j

i } from exterior boundary node values, where the superscript
j indicates that i th subdomain is linked with j th subdomain. At each iteration step of CG solver, i th
subdomain sends {�i } to j th subdomain and receives {w j

i } from j th subdomain to complete matvec
(matrix vector multiplication) operation. As for parallel preconditioner, block ILU decomposition
is applied to all subdomains simultaneously for the following square block matrix:

[ Ãi ] =
(
Bi Ei

Fi Ci

)
(18)

3. NUMERICAL RESULTS

3.1. Driven cavity flow in a cubical enclosure

In order to verify the parallel code and to check the parallel performance, we consider the
driven cavity flow in a cubical enclosure, as shown in Figure 2, with the following boundary
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Figure 2. A schematic of computational domain for solving the driven cavity flow in a cubical enclosure.

Figure 3. (a) Velocity profiles at (x, z) = (0.5, 0.5) for three-dimensional driven cavity
flow in a cubical enclosure at Re= 100, 400 and 1000, and (b) speedup of parallel

computation for solving the driven cavity flow.

conditions:
face 1: ui =U

faces 2.6: ui = 0
(19)

The problem has been solved for Re= 100, 400 and 1000 using a 32× 32× 32 non-uniform struc-
tured mesh. In Figure 3(a), the streamwise velocity distributions are compared at (x, z) = (0.5, 0.5)
for the three Reynold numbers. The results are in excellent agreement with previous results obtained
by Jiang et al. [25] who used a 50× 52× 25 mesh with velocity–pressure–vorticity formulation
and least-squares FEM.
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As a measure of parallelization efficiency, we use speedup which is defined as follows:

speedup= T1
TN

(20)

where T1 is the calculation time using one processor and TN is the calculation time using N
processors. Figure 3(b) compares the speedups obtained with up to 64 processors when four
different preconditioners are used. Namely, they are diagonal, block ILU, iterative block ILU and
distributed ILU preconditioners [15, 16, 26]. As is well known, the speedup tends to be saturated
as the number of processors increases. Note that the speedups gained from parallel preconditioners
in Figure 3 are relatively small because the problem size is not big enough. It is to be shown in
Section 3.4 that the present parallel code proves to be super-linear scalable for a very large-scale
problem. Since the block ILU gives the best performance among the preconditioners tested in the
present problem, we are to use it for the following problems.

3.2. Turbulent channel flow

In order to confirm the validity of the present algorithm in connection with the LES models, we
solve turbulent channel flows at Re� = 180 and 1050, based on channel half-height, fluid viscosity
and friction velocity. We use a 51× 71× 71 mesh of 3
 × 2× 
 periodic domain for the simulation
at Re� = 180, which is quite coarse compared to that used by Kim et al. [27], and a 64× 97× 128
mesh of 2
× 2× 2
 periodic domain for the simulation at Re� = 1050. Figures 4 and 5 show
the mean velocity profiles and velocity fluctuations normalized by friction velocities at Re� = 180
and 1050, respectively, when the constant-coefficient model is used. Mean velocity profiles agree
satisfactorily with the results of the existing DNS [27] and dynamic LES [28], respectively, while
turbulence intensity profiles differ from the previous numerical results, particularly at the higher
Reynolds number. For the constant-coefficient model, damping function in Equation (14) is used
to account for the wall effect. From Figures 4 and 5, it seems that the present FEM based on
P1/P1 formulation works quite satisfactorily for obtaining the mean velocity profiles of the channel
flow. However, a more sophisticated LES model [28] needs to be incorporated for more precise
estimation of the turbulence intensity profiles. Figure 6 shows an instantaneous velocity field at
y+ ∼ 2, where the streaky pattern is clearly revealed at Re� = 180.

3.3. Turbulent flow over a backward-facing step

For overall code validation, turbulent flow over a backward-facing step is solved at Re= 5100
based on the step height h and inlet free-stream velocity, and an expansion ratio of 1.20, which
coincides to the same flow domain as adopted in the DNS study of Le et al. [29]. In the present
study, a 250× 120× 32 grid system as shown in Figure 7 is used for LES, while Le et al. conducted
DNS with a 768× 192× 64 grid system. In the vertical direction, 40 out of 120 nodes are placed
within the step (y<h), in comparison with 70 out of 192 cells for the case of Le et al. As shown
in Figure 8, the pressure coefficient obtained from the present LES agrees reasonably well with
both the experiment of Jovic and Driver [30] and DNS of Le et al. from the step corner to the
reattachment point, where the grid resolution in the streamwise direction is finer than the other
regions. However, it deviates a little from the experimental value downstream of the reattachment
point. This seems to be due to the fact that the streamwise grid resolution of the present LES is
not fine enough. According to the grid resolution test of Le et al. [29] for the DNS of a backward-
facing step flow, the streamwise grid resolution is very important in order to correctly simulate
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Figure 4. (a) Mean velocity profile and (b) velocity fluctuations normalized by wall
velocity in a turbulent channel flow at Re� = 180.

Figure 5. (a) Mean velocity profile and (b) velocity fluctuations normalized by wall
velocity in a turbulent channel flow at Re� = 1050.

the unsteady flow field. Figure 9 compares the wall skin friction coefficient distribution with the
experimental [30] and DNS results [29]. As in Figure 8, the friction coefficient deviates from the
experiment downstream of the reattachment point while it agrees well with both experiment and
DNS in the recirculation region. It should be noted that in Figure 9 positive value of the friction
coefficient appears in the reverse flow region for both the present simulation and DNS of Le et al.
A similar result was reported in the LES study of Friedrich and Arnal [31].
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Figure 6. Instantaneous velocity field at y+ ∼ 2 in a turbulent channel flow at Re� = 180.

Figure 7. 250× 120× 32 mesh used for calculating the backward-facing step flow (x.y plane).

Figure 8. Comparison of pressure coefficient with experimental and DNS results.
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Figure 9. Comparison of step-wall skin friction coefficient with experimental and DNS results.

3.4. Turbulent flow around the MIRA model

Turbulent flow around the MIRA model at Re= 2.6× 106, which is based on inlet velocity, model
height and fluid viscosity, is calculated with two Smagorinsky LES models. The unsteady solution
which uses the constant-coefficient model is obtained first and then the solution which uses the
dynamic model is sought by taking the former as the initial guess. Time step size is 0.003 s.
To generate an unstructured mesh for the simulation, ICEM-CFD, a commercial mesh generation
program, is used. Tetrahedral elements are used to fill the three-dimensional computational domain
and then several layers of prism elements are stacked on the surface of the MIRA model in order
to resolve the boundary layer, as was done by Johnson and Tezduyar [5]. Each prism element
is later subdivided into three tetrahedrons to make the present code simpler. We have generated
three meshes. Coarse one (Mesh I) consists of approximately 0.6 million nodes, intermediate
one (Mesh II) about 2.7 million nodes, and the fine one (Mesh III) about 6.7 million nodes.
Figure 10 shows some cross-sectional slices of unstructured tetrahedral element mesh around the
MIRA model on some planes and indicates the boundary conditions corresponding to wind tunnel
condition. Relatively denser nodes are used near the model surface and the wake region.

Figure 11 shows partitioned unstructured mesh around the model when 32 processors are used
for parallel computation, based on domain decomposition method. METIS Library is used to
partition the unstructured mesh. Figures 12 and 13 show the velocity fields on some planes at
a given instant when the constant-coefficient LES model is employed, which are very complex.
There is a recirculation zone in front of the windshield due to the local adverse pressure gradient
and vortices are shed at both edges of the roof also due to strong adverse pressure gradients. We
can also find that there is a reverse flow behind the wheels and strong reverse flow alongside the
rear window. In Figure 14, some snapshots of the unsteady motion of the flow around the model
are shown. The velocity and pressure fields change with time due to vortices that are shed from
the front edge of the roof.

In Figure 15, we compared our time-averaged pressure distribution along the upper surface of
the symmetric plane (z.x plane) of the MIRA model with the experimental result and the numerical
result obtained by using the k.� turbulence model. The results are obtained with Mesh III using two
Smagorinsky models. The distance shown in the figure is dimensional and is measured from the
reference point, where Cp is about 0.6. Although there are some discrepancies in the magnitudes
of pressure peaks, the calculated results predict the peak positions exactly and agree quite well

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 56:823–843
DOI: 10.1002/fld



PARALLEL LARGE EDDY SIMULATION AROUND MIRA MODEL 835

Figure 10. Some slices of unstructured mesh around the MIRA model.

Figure 11. A slice of partitioned mesh in the centre plane around the MIRA model.
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Figure 12. Instantaneous velocity fields over the front part of the MIRA model, obtained by the
constant-coefficient LES model at t ∼ 17 s (Mesh III): (a) bonnet and (b) roof.

Figure 13. Instantaneous velocity fields over and past the rear part of the MIRA model,
obtained by the constant-coefficient LES model at t ∼ 17 s (Mesh III): (a) backlight;

(b) rear wheel; and (c) y–z plane at 0.2L behind the MIRA model.
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Figure 14. Pressure and velocity fields of unsteady flow around the MIRA model (Mesh III).

with the experiment overall. The results predicted by two Smagorinsky models are similar except
that the predicted magnitude of the second pressure peak is smaller for the dynamic model. In
Figure 16, the pressure distributions are compared, which are obtained by using the constant-
coefficient model for two different formulations. Compared to the result obtained by Choi et al.
[8] through a serial calculation using P2/P1 formulation with about 0.7 million nodes, the present
Cp curve calculated by P1/P1 formulation with about 6.7 million nodes (Mesh III) deviates a little
more from the experiment at the first pressure peak, but at the second peak it gives closer result to
the experiment. This is not odd at all considering that P2/P1 formulation is of third-order accuracy
in terms of the spatial discretization of the velocity field while P1/P1 is second-order accurate and
that the present P1/P1 formulation has only 2.2 times as many nodes as P2/P1 formulation in each
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Figure 15. Comparison of Cp curves along the upper surface of the MIRA model obtained by LES models
(Mesh III) with those obtained previously by experiment and two-equation turbulence model.

Figure 16. Comparison of Cp curves along the upper surface of the MIRA model obtained by using the
constant-coefficient LES model for two different formulations.
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Figure 17. Comparison of Cp curves along the upper surface of the MIRA model obtained by using the
constant-coefficient LES model for two different meshes.

Figure 18. Comparison of drag histories of the MIRA model, obtained by using the constant-coefficient LES
model for three different meshes at Re= 2.6× 106.
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Figure 19. Comparison of drag histories of the MIRA model, obtained by using two
Smagorinsky models at Re= 2.6× 106 (Mesh III).

Figure 20. Instantaneous distribution of the dynamic LES model constant
near the surface of the MIRA model.

direction of three-dimensional calculation. Thus, we can conclude that the mesh resolutions where
the pressure peaks occur were not fine enough to predict exact results with second-order accurate
discretization method. This can also be seen in Figure 17 where the pressure distributions obtained
from two meshes, Mesh II and Mesh III, are compared. The distributions are almost similar to
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Figure 21. Speedup of parallel computation for solving the flow around MIRA (Mesh II).

each other except for the magnitude of the second peak. The finer mesh shows better accuracy at
the peak, due to finer resolution.

Figure 18 shows the histories of drag coefficients predicted by the constant-coefficient LESmodel
for three different meshes at Re= 2.6× 106. The drag coefficient approaches the experimental result
as the number of nodes increases. In particular, the drag coefficient obtained from Mesh III (6.7
million nodes) is about 0.355, which is only 10% larger than the experimental one [9], 0.316,
and gives quite a satisfactory result. In Figure 19, drag coefficients predicted with Mesh III using
two Smagorinsky models are compared. The result predicted by the constant-coefficient model
gives slightly better result than that predicted by the dynamic model. The reason for the higher
drag prediction of the dynamic model is thought to be from the model constant calculation. In
Figure 20, an instantaneous model constant distribution of the dynamic model near the surface
of the MIRA model is shown. Unlike the turbulent channel flow, where the averaging process
is performed on each constant y plane, model constants are negative in many regions near the
surface. In the calculation, we have clipped out these negative model constants. Thus, the turbulent
flow calculated in these regions is practically the same as those calculated without an LES model.
As a result, the calculated drag coefficients are higher than that of the constant-coefficient model.
It is found that mesh resolution of the present study is not fine enough near the solid boundary, so
that the values of y+ at the first nodes from the wall is around 50. Due to the above-mentioned
reasons, more works need to be done in the future to apply the dynamic LES model with finer
meshes or the detached eddy simulation model to the calculation of the turbulent flow around the
MIRA model.

Lastly, a scalability curve obtained from the simulation of this large-scale problem is shown in
Figure 21 when JS 20 at Seoul National University, whose CPU is PowerPC970 2.2GHz 2-way
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with 1 Myrinet/1 Gigabyte Ethernet, is used. It is revealed that the present parallel code based
on block ILU preconditioned CG algorithm is super-linearly scalable up to 48 processors due to
cache memory effect. Therefore, it can be said that the present parallel algorithm is quite scalable
for a large-scale computation.

4. CONCLUSIONS

In this work, 4-step splitting method is parallelized to solve the turbulent flow around the MIRA
model at Re= 2.6× 106. Constant-coefficient and dynamic-Smagorinsky models are adopted for
the modelling of small eddies in turbulent flow and the resulting solutions are compared.

In spite of good agreement in calculating turbulent channel flow and backward-facing step flow,
the dynamic-Smagorinsky model caused the occurrence of negative model constants in calculating
the turbulent flow around the MIRA model. As a result, the dynamic model predicted higher drag
coefficient than the constant-coefficient model with the same mesh.

In contrast, the result obtained by the constant-coefficient model is in good agreement. Overall,
the time-averaged pressure distribution agrees well with the experiment except for the two pressure
peaks. There are some discrepancies in magnitude of the two peaks, but these are mainly attributed
to insufficient mesh resolution near the edges of the upper surface. As the number of nodes
increases, the predicted pressure distribution approaches the experimental result. In the viewpoint
of the drag coefficient prediction, the present simulation gives quite a satisfactory result. The
predicted drag coefficient is about 10% larger compared with the experimental result and agrees
better than those obtained using two-equation turbulence models.
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